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Critical packing fraction of rectangular particles on the square lattice
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~Received 22 February 2000!

The random packing of identical and nonoverlapping rectangular particles of sizen3m (1<n,m<10) is
studied numerically on the square lattice, and the corresponding packing fractionspf and percolation prob-
abilities P` are determined. We find that for randomly oriented particles there is a critical packing fraction
pf

c50.6760.01, such that for all particles sizesn3m for which pf,pf
c they do not percolate, i.e.,P`→0 for

L→`, while whenpf.pf
c ,P`→1 whenL→` and an infinite cluster exists. The value forpf

c is found to be
consistent with the continuum percolation thresholdpc>0.67 for overlapping particles in two dimensions.

PACS number~s!: 64.60.Ak, 81.05.Rm, 82.70.Kj
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Is there any critical behavior underlying the maximu
random sequential packing~packing fraction! of particles of
different size and shape on a lattice? In order to address
general question we study the particular case of identi
rectangular, and randomly orientated, sequentially and n
overlappingly packed particles on the square lattice. C
cerning more basic quantities such as the packing frac
itself, the special case of square particles has been studi
the past@1#. It was found that for systems consisting of pa
ticles of size 232 and 333 ~in units of the lattice constan
a), clusters of particles in contact occur that span the wh
lattice and percolate in the limit of an infinite system
whereas for particles of size 434 and larger, only finite
clusters exist. These models are also interesting for un
standing particle size effects on the conductivity of mixtu
of insulating particles dispersed in a normal ionic conduc
@2,3#.

In this paper we show that the behavior for square p
ticles can be better appreciated by studying the more gen
case of rectangular particles of sizen3m. We find that there
is a critical packing fractionpf

c50.6760.01 such that for
packing fractionspf,pf

c only finite clusters exist, while for
pf.pf

c a percolating cluster of particles in contact occu
Indeed, in the special cases of square particles one hapf
>0.75 for size 232, pf>0.68 for size 333, andpf>0.65
for size 434.

Let us start by briefly mentioning how the packing alg
rithm is actually implemented. Initially all lattice sites a
available for occupation. For a rectangular particle, i.e.,
sizesnÞm, we first determine at random the orientation th
the particle will take once deposited on the lattice. Thus,
average, the packed rods will be distributed isotropically
the lattice on length scalesl @a max$n,m%. Second, a lattice
site ~denoted as deposition site! is chosen at random, a
which the upper-right particle’s corner of a new particle c
be located. Then, according to the previously determi
particle orientation it is checked whether the deposition s
as well as the additional (n3m)21 lattice sites covered by
the particle, are available for occupation. If alln3m sites are
available the particle is deposited, the sites are marked
occupied, and the number of remaining available deposi
sites is reduced accordingly. Otherwise, the try is discard
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To speed up the simulations, two flags are associated
each site. One of the flags indicates if or if not it is possib
to deposit a horizontally oriented particle with its upper-rig
corner at the site; the second flag indicates the same f
vertically oriented particle. Each time a particle is deposi
on the lattice, the flags in the local surrounding located to
left and above the particle are updated accordingly. T
deposition is repeated until there are no more deposition s
available. In this case, the deposition is considered to
completed and the resulting fraction of occupied sites yie
the packing fractionpf @5pf(n,m,L)#. Then, a connectivity
analysis is performed to establish whether the partic
percolate either horizontally or vertically. This yields th
percolation probabilityP` @5P`(n,m,L)#, being just the
fraction of configurations in which a percolating~‘‘infinite’’ !
cluster is found within the total number of configuratio
considered@4#.

FIG. 1. Illustrations of random packing configurations on t
square lattice of linear sizeL5100 for rectangular particles of size
~a! 334 (0.714), ~b! 434 (0.649), ~c! 435 (0.684), and~d!
535 (0.630). The corresponding asymptotic packing fractions
reported in parentheses. The percolating clusters are show
black, the remaining finite clusters in gray, and white indicates
unoccupied lattice sites.
100 ©2000 The American Physical Society
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Additionally, one can either forbid or allow the particle
to be partially outside the lattice. In our quantitative analy
we have adopted the first criterion. By allowing the partic
to exceed the boundaries of the lattice, we have verified
the asymptotic values obtained for bothpf and P` remain
unchanged.

As an illustration, we show in Fig. 1 four typical configu
rations obtained for the lattice sizeL5100, and particle sizes
~a! 334, ~b! 434, ~c! 435, and~d! 535. The black color
indicates a percolating cluster, i.e., a cluster of particles
contact that spans the whole system, connecting oppo
sides of the lattice. The remaining finite clusters are in
cated in light gray color. Surprisingly, a percolating cluster

FIG. 2. Plot of~a! packing fractionspf and~b! percolation prob-
abilities P` , for rectangular particles of sizes 43m versus the in-
verse of the lattice sizeL, in the casesm51 ~open circles!, m52
~full diamonds!, m53 ~open squares!, m54 ~full triangles!, m
55 ~open stars!, m56 ~full circles!, m57 ~open diamonds!, m
58 ~full squares!, m59 ~open triangles!, and m510 ~full stars!.
Averages are performed over 1000 realizations each.
s
s
at

n
ite
i-

found in the cases~a! and~c!, i.e., for sizes 334 and 435,
whereas as expected only finite clusters exist for 434 and
535. It is interesting to notice that a small particle aniso
ropy ~here illustrated for the case 334 and 435) favors
percolation. To establish whether this behavior holds asym
totically, in the limit L→`, we have studied larger system
sizes, up toL52000, and plotted the percolation probabili
P` versus 1/L. WhenL→`, P` tends either to zero~only
finite clusters exist! or it tends to one~an infinite cluster
exists!.

The small 1/L ~large L) behavior ofP` is evident from
the plots shown in Fig. 2, where the packing fractionspf and
percolation probabiliesP` are shown as a function of th
inverse lattice size 1/L, for particle sizes 43m with 1<m
<10. While the packing fraction displays an almost line
dependence on 1/L, the percolation probabilityP` shows a
less trivial behavior. In some cases, as form54, 6, and 7,
the asymptotic limit~either 0 or 1) is observed only for ver
largeL values, indicating a rather large correlation length
the system, reminiscent of a critical behavior.

FIG. 3. Plot of the asymptotic packing fractionspf for rectan-
gular particles of sizesn3m versus the linear sizem, in the cases
n51 ~open circles!, n52 ~full diamonds!, n53 ~open squares!, n
54 ~full triangles!, n55 ~open stars!, andn56 ~full circles!. The
horizontal line indicates the valuepf

c50.67, corresponding to ou
estimate for the critical value of the packing fraction. Averages
performed over 1000 realizations each.
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TABLE I. Table of the asymptotic packing fractionspf for rectangular particles of sizen3m. The error
bars for the present values are estimated to be60.010 in all cases~except for the trivial case 131).

m\n 1 2 3 4 5 6 7 8 9 10

1 1 0.910 0.848 0.811 0.786 0.770 0.758 0.746 0.739 0.7

2 0.910 0.748 0.771 0.732 0.720 0.704 0.692 0.685 0.675 0.6

3 0.848 0.771 0.679 0.714 0.702 0.683 0.678 0.672 0.664 0.6

4 0.811 0.732 0.714 0.649 0.684 0.683 0.669 0.660 0.658 0.6

5 0.786 0.720 0.702 0.684 0.630 0.664 0.667 0.666 0.657 0.6

6 0.770 0.704 0.683 0.683 0.664 0.620 0.651 0.659 0.658 0.6

7 0.758 0.692 0.678 0.669 0.667 0.651 0.608 0.638 0.650 0.6

8 0.746 0.685 0.672 0.660 0.666 0.659 0.638 0.601 0.631 0.6

9 0.739 0.675 0.664 0.658 0.657 0.658 0.650 0.631 0.600 0.6

10 0.735 0.670 0.660 0.652 0.644 0.653 0.653 0.644 0.626 0.5
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To make this finding more quantitative and to elucida
whether our system is characterized by a percolation thr
old pf

c , in the sense that an infinite cluster exists whenpf

.pf
c and no percolating cluster occurs whenpf,pf

c , inde-
pendentlyof both n and m, we have performed extensiv
simulations forn andm in the range 1<n, m<10. The re-
sults for the asymptotic packing fractionspf , obtained by
linear fitting pf as a function of 1/L and taking 1/L→0, for
1<n<10 and 1<m<6 are displayed in Fig. 3. The numer
cal data forpf for particle sizes 1<n, m<10 are shown in
Table I.

For the lattice sizes considered, one generally obse
that for any particle sizen3m in the range 1<n, m<10,
P` clearly tends to 0 or 1 for large systems. The behavio

FIG. 4. Phase diagram for the asymptotic packing fractionspf

and percolation probabilitiesP` , for rectangular particles of size
n3m. White indicates the casepf,pf

c and P`50, whereas black
indicates the casepf.pf

c andP`51.
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P` for a given pair of values (n,m) is found to be strongly
related to the respective quantitypf : In all cases wherepf

,0.67, we findP`→0 asL→`, while whenpf>0.67 the
limit P`→1 is obtained forL→`. Thus, we estimate the
packing fraction threshold to bepf

c50.6760.01. The behav-
ior of pf andP` can be summarized in a ‘‘phase diagram
as shown in Fig. 4.

To conclude, we have shown that the packing fractionpf

of rectangular particles on a square lattice plays a similar
as the occupation probabilityp in standard percolation, in the
sense that there is a critical packing fractionpf

c such that for
pf,pf

c only finite clusters exist, while forpf.pf
c a percolat-

ing cluster spans the lattice. In contrast to the occupa
probability p in standard percolation, however, the quant
pf cannot be chosen arbitrarily, but is a result of the pack
process and has to be determineda posteriori for a given
shape and particle size. We note that the obtained valuepf

c

50.6760.01 is consistent with the critical concentration f
continuum percolation of overlapping objects (pc>0.6766,
as obtained for disks@5#! in two dimensions. Our finding of
a critical packing fraction for rectangular particles, whic
does not depend on their size, is supported by the fact tha
two dimensions the continuum percolation thresholdpc is
believed to be independent of the form of the overlapp
~convex! objects considered~cf. @6,7# and references
therein!. Since the packing fraction itself is a much eas
quantity to determine than the percolation probability, o
result suggests a simple criterion to establish whether a
tem of particles of arbitrary~convex! shape will percolate or
not. The possibility that the critical valuepf

c>0.67, obtained
here for rectangular particles on the square lattice, holds
for other particle shapes and lattice types remains to be
vestigated.
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